

TPF Formation Acquisition Sensor Testbed

Jeff Tien, George Purcell, Jeff Srinivasan, Larry Young

Jet Propulsion Laboratory California Institute of Technology

> 2003 TPF Expo Pasadena, CA

Purpose of the FST Acquisition Sensor Testbeds

Terrestrial Planet Finder Mission

To demonstrate feasibility of an integrated 4π -coverage range and bearing formation acquisition (coarse) sensor that would enables the spacecraft to perform:

- Lost-in-space recovery
- Coarse formation flying
- Collision avoidance in case of single spacecraft fault condition

TPF Formation Sensor Testbed Requirements

Terrestrial Planet Finder Mission

Formation Sensor Testbed (FST)							
Requirements	TPF Flight	FST	Comments				
Performance							
FOV Coverage	$4\pi sr$	$2\pi sr$	Extend to 4s by analysis				
Cooperative Mode							
Operating Range	16 m - 10 km	16 m - 1 km	10 km for evaporation				
Range Accuracy	0.5 m	0.5 m					
Bearing Accuracy	1 degree	1 degree					
Non-cooperative mode			Radar mode				
Operating Range	16–200 m	16–50 m	center to center				
Range Accuracy	1 m	4 m					
Bearing Accuracy	30 degrees	-					
Update Rate	1 Hz	1 Hz					

Assumptions for Relative-Sensor Requirements _____

Terrestrial Planet Finder Mission

Origins Mission

- 5 spacecraft (scalable)
- Each spacecraft must be able to determine the range and bearing of any other visible spacecraft without prior information.
- Coarse sensor must be able to perform self-calibration without maneuvering the spacecraft.
- The coarse sensor must maintain the integrity of the formation in case of a fault condition ("radar mode")

) () () () (

Range and Bearing-angle Links

Design and Features

Terrestrial Planet Finder Mission

TPH

A NASA Origins Mission An RF sensor (S band) based upon the Autonomous Formation Flying (AFF) sensor

- Integrated range and bearing sensor
- RF sensor to achieve 4π -steradian coverage
- Multiple sets of transmitting and receiving antennas to do ranging and bearing-angle measurements for a target spacecraft in any direction
 - 1 transmitting antenna
 - 3 receiving antennas
- Configurable baseband processor can perform multiple functions
 - GPS-type signal processing
 - Pseudorange and phase measurements
 - Local diagnostics and estimation
 - Inter-spacecraft communication
- Integrated radar for collision avoidance

High-level functional block diagram

Design and Features

Terrestrial Planet Finder Mission

A NASA **Origins** Mission

New signal structure and associated algorithms will be developed to enable:

- Simultaneous operation on many spacecraft.
- Fast signal acquisition of less than 1 minute for multiple spacecraft operation.
- An order of magnitude reduction of range error.
- Fine bearing angle measurement without the need for spacecraft rotation calibration maneuver.

Potential future capabilities

- Integrated high-rate comm.
- Integrated medium FF sensor

Technical Challenges

Terrestrial Planet Finder Mission

TPF

Challenges		Mitigation			
	Analysis		Outdoor Testbed	()thar	
 Achieve 4π coverage for both range and bearing measurements 	\checkmark		√	~	
 Calibrate the coarse sensor without spacecraft maneuvers 	$\sqrt{}$		$\sqrt{}$		
 Perform adequate instrumental delay and phase calibration 	$\sqrt{}$		√		
 Maintain the array with the coarse sensor disabled one spacecraft (Radar mode) 	on $\sqrt{}$		\checkmark		
Mitigate effect of multipath	$\sqrt{}$		\checkmark	\checkmark	
 Acquire and track a combination of close and distant spacecraft 	t 🗸	√	$\sqrt{}$		
 Meet requirement for heat dissipation on the cold side of the s/c 	de √			\checkmark	
Switch receiving and transmitting antennas dynamically	\checkmark		√		
Frequency subsystem design	\checkmark		\checkmark		

Technical Challenge Mitigation Plan

Terrestrial Planet Finder Mission

TPH

A NASA Origins Mission

FST Acquisition Sensor Analysis

- Error Budget
 - Multipath
 - System noise
 - Link budget
 - Covariance analysis
- Signal acquisition analysis
- Frequency system analysis
- Antenna radiation & phase pattern modeling including the effect of s/c structure

FST Acquisition Sensor Testbeds

Preliminary Test Result

(JPL Mesa 1200 ft range)

Objective:

Proof-of-concept demo of using the simplified version of the new signal structure to get absolute bearing angle measurement without the need for spacecraft rotation calibration maneuver.

Requirement:

• Accuracy: < 5 degree bearing angle

JPL Mesa Antenna Test Range

Bearing Angle (Truth vs. Measured)

Summary Results:

- Bearing accuracy: < 2 degrees
- Bearing precision: ~ 1 degree (1σ)

Benefit for TPF:

Significant reduction in flight system design and operational complexity.

Plans

Sept, 2004 - Demonstrate sensor functionality, range and bearing performance stability, and signal acquisition time for 2 s/c operation in the indoor testbed.

Sept, 2005 - Demonstrate sensor functionality, range and bearing performance stability (including jamming effect from the third s/c), and signal acquisition time for 3 s/c operation in the indoor testbed.

June, 2006 - Demonstrate end-to-end system performance and signal acquisition time for 3 s/c operation in the outdoor articulated testbed.

Acknowledgement

Terrestrial Planet Finder Mission

TPF

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (Terrestrial Planet Finder project and Code R Distributed Spacecraft Technology program).